On positive definiteness over locally compact quantum groups

Ami Viselter

(Jointly with Volker Runde)

University of Haifa, Israel

West Coast Operator Algebra Seminar University of Denver, November 2, 2014

Introduction

- Positive-definite functions
- Locally compact quantum groups (LCQGs)
- Positive-definite functions over LCQGs
- Topologies on the positive-definite functions
 - Results of Granirer and Leinert
 - Over LCQGs
- Square-integrable positive-definite functions
 - Results of Godement and Phillips
 - Over LCQGs
- Amenability
 - Quick intro & Results of Godement and Valette
 - Over LCQGs
- The separation property
 - Basic results for groups
 - Over LCOGs

- ∢ ∃ ▶

Introduction

- Positive-definite functions
- Locally compact quantum groups (LCQGs)
- Positive-definite functions over LCQGs
- Topologies on the positive-definite functions
 - Results of Granirer and Leinert
 - Over LCQGs
- Square-integrable positive-definite functions
 - Results of Godement and Phillips
 - Over LCQGs
- Amenability
 - Quick intro & Results of Godement and Valette
 - Over LCQGs
- The separation property
 - Basic results for groups
 - Over LCOGs

- ∢ ∃ ▶

Introduction

- Positive-definite functions
- Locally compact quantum groups (LCQGs)
- Positive-definite functions over LCQGs
- Topologies on the positive-definite functions
 - Results of Granirer and Leinert
 - Over LCQGs
- Square-integrable positive-definite functions
 - Results of Godement and Phillips
 - Over LCQGs
- Amenability
 - Quick intro & Results of Godement and Valette
 - Over LCQGs
- The separation property
 - Basic results for groups
 - Over LCOGs

Introduction

- Positive-definite functions
- Locally compact quantum groups (LCQGs)
- Positive-definite functions over LCQGs
- Topologies on the positive-definite functions
 - Results of Granirer and Leinert
 - Over LCQGs
- Square-integrable positive-definite functions
 - Results of Godement and Phillips
 - Over LCQGs
- Amenability
 - Quick intro & Results of Godement and Valette
 - Over LCQGs
- The separation property
 - Basic results for groups
 - Over LCOGs

Introduction

- Positive-definite functions
- Locally compact quantum groups (LCQGs)
- Positive-definite functions over LCQGs
- Topologies on the positive-definite functions
 - Results of Granirer and Leinert
 - Over LCQGs
- Square-integrable positive-definite functions
 - Results of Godement and Phillips
 - Over LCQGs
- Amenability
 - Quick intro & Results of Godement and Valette
 - Over LCQGs
- The separation property
 - Basic results for groups
 - Over LCOGs

Definition (Godement, 1948)

A continuous function $x : G \to \mathbb{C}$ is positive definite if

 $(x(s_i^{-1}s_j))_{1 \le i,j \le n}$ is positive in M_n whenever $s_1, \ldots, s_n \in G$.

Such x is always bounded. In fact, ||x|| = x(e).

Examples

Any character of G is positive definite.

For $g: G \to \mathbb{C}$, let $\tilde{g}(s) := g(s^{-1})$.

- If $g \in L^2(G)$ then $g * \tilde{g}$ is positive definite.
- 3 x is positive definite $\iff \overline{x}$ is positive definite.

Definition (Godement, 1948)

A continuous function $x : G \to \mathbb{C}$ is positive definite if

 $(x(s_i^{-1}s_j))_{1 \le i,j \le n}$ is positive in M_n whenever $s_1, \ldots, s_n \in G$.

Such x is always bounded. In fact, ||x|| = x(e).

Examples

Any character of G is positive definite.

For $g: G \to \mathbb{C}$, let $\tilde{g}(s) := \overline{g(s^{-1})}$.

If $g \in L^2(G)$ then $g * \tilde{g}$ is positive definite.

• *x* is positive definite $\iff \overline{x}$ is positive definite.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Positive-definite functions

Theorem (Bochner, Weil, Godement, De Cannière–Haagerup)

Let $x : G \to \mathbb{C}$ be continuous and bounded. Then TFAE:

- x is positive definite;
- 2 $\langle x, f^* * f \rangle \ge 0$ for each $f \in L^1(G)$, where $f^*(s) := \overline{f(s^{-1})} \Delta(s^{-1})$;
- **③** There is a continuous unitary rep π of G on \mathcal{H}_{π} and $\xi \in \mathcal{H}_{\pi}$ s.t.

$$x(g) = \langle \pi(g)\xi, \xi \rangle$$
 $(\forall g \in G);$

Equivalently, it is (identified with) a positive element of B(G);

• x is a completely positive multiplier of A(G).

Legend

• $A(G) := VN(G)_*$ (the Fourier algebra), realized in $C_0(G)$ as $\{f * \tilde{g} : f, g \in L^2(G)\}.$

• $B(G) := C^*(G)^*$ (the Fourier–Stieltjes algebra), realized in $C_b(G)$. Ami Viseter (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 4/26

- A von Neumann algebra: $L^{\infty}(G)$
- ② Co-multiplication: the *-homomorphism $\Delta: L^{\infty}(G) \rightarrow L^{\infty}(G) \otimes L^{\infty}(G) \cong L^{\infty}(G \times G)$ defined by

 $(\Delta(f))(t,s):=f(ts)\qquad (f\in L^\infty(G)).$

By associativity, we have $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.

3 Left and right Haar measures. View them as n.s.f. weights $\varphi, \psi: L^{\infty}(G)_{+} \to [0, \infty]$ by $\varphi(f) := \int_{G} f(t) dt_{\ell}, \psi(f) := \int_{G} f(t) dt_{r}.$

- A von Neumann algebra: $L^{\infty}(G)$
- ② Co-multiplication: the ∗-homomorphism $\Delta : L^{\infty}(G) \rightarrow L^{\infty}(G) \otimes L^{\infty}(G) \cong L^{\infty}(G \times G)$ defined by

$$(\Delta(f))(t,s):=f(ts)\qquad (f\in L^\infty(G)).$$

By associativity, we have $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.

3 Left and right Haar measures. View them as n.s.f. weights $\varphi, \psi: L^{\infty}(G)_{+} \rightarrow [0, \infty]$ by $\varphi(f) := \int_{G} f(t) dt_{\ell}, \psi(f) := \int_{G} f(t) dt_{r}.$

- A von Neumann algebra: $L^{\infty}(G)$
- ② Co-multiplication: the *-homomorphism $\Delta : L^{\infty}(G) \rightarrow L^{\infty}(G) \otimes L^{\infty}(G) \cong L^{\infty}(G \times G)$ defined by

$$(\Delta(f))(t,s):=f(ts)\qquad (f\in L^\infty(G)).$$

By associativity, we have $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.

Solution Left and right Haar measures. View them as n.s.f. weights $\varphi, \psi: L^{\infty}(G)_{+} \to [0, \infty]$ by $\varphi(f) := \int_{G} f(t) dt_{\ell}, \psi(f) := \int_{G} f(t) dt_{r}.$

- A von Neumann algebra: $L^{\infty}(G)$
- ② Co-multiplication: the ∗-homomorphism $\Delta : L^{\infty}(G) \rightarrow L^{\infty}(G) \otimes L^{\infty}(G) \cong L^{\infty}(G \times G)$ defined by

$$(\Delta(f))(t,s):=f(ts)\qquad (f\in L^\infty(G)).$$

By associativity, we have $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.

Solution Left and right Haar measures. View them as n.s.f. weights $\varphi, \psi: L^{\infty}(G)_{+} \to [0, \infty]$ by $\varphi(f) := \int_{G} f(t) dt_{\ell}, \psi(f) := \int_{G} f(t) dt_{r}.$

Motivation

Lack of Pontryagin duality for non-Abelian I.c. groups.

Definition (Kustermans & Vaes, 2000)

A locally compact quantum group is a pair $G = (M, \Delta)$ such that:

- M is a von Neumann algebra
- ② Δ : *M* → *M* ⊗ *M* is a co-multiplication: a normal, faithful, unital *-homomorphism which is co-associative, i.e.,

$$(\Delta \otimes \mathrm{id}) \Delta = (\mathrm{id} \otimes \Delta) \Delta$$

3 There are two n.s.f. weights φ, ψ on *M* (the Haar weights) with:

- $\varphi((\omega \otimes \mathrm{id})\Delta(x)) = \omega(\mathbb{1})\varphi(x)$ when $\omega \in M^+_*$, $x \in M^+$ and $\varphi(x) < \infty$
- ▶ $\psi((\mathrm{id} \otimes \omega)\Delta(x)) = \omega(\mathbb{1})\psi(x)$ when $\omega \in M_*^+$, $x \in M^+$ and $\psi(x) < \infty$.

Denote $L^{\infty}(\mathbb{G}) := M$ and $L^{1}(\mathbb{G}) := M_{*}$.

Ami Viselter (University of Haifa, Israel)

Motivation

Lack of Pontryagin duality for non-Abelian I.c. groups.

Definition (Kustermans & Vaes, 2000)

A locally compact quantum group is a pair $\mathbb{G} = (M, \Delta)$ such that:

- M is a von Neumann algebra
- ② Δ : *M* → *M* ⊗ *M* is a co-multiplication: a normal, faithful, unital *-homomorphism which is co-associative, i.e.,

$$(\Delta \otimes \mathrm{id}) \Delta = (\mathrm{id} \otimes \Delta) \Delta$$

Solution There are two n.s.f. weights φ, ψ on *M* (the Haar weights) with:

- $\varphi((\omega \otimes \mathrm{id})\Delta(x)) = \omega(\mathbb{1})\varphi(x)$ when $\omega \in M^+_*$, $x \in M^+$ and $\varphi(x) < \infty$
- $\psi((\mathrm{id}\otimes\omega)\Delta(x)) = \omega(1)\psi(x)$ when $\omega \in M^+_*$, $x \in M^+$ and $\psi(x) < \infty$.

Denote $L^{\infty}(\mathbb{G}) := M$ and $L^{1}(\mathbb{G}) := M_{*}$.

Ami Viselter (University of Haifa, Israel)

- Rich structure theory, including an unbounded antipode and duality G → Ĝ within the category satisfying Ĝ = G.
- L¹(G) is a Banach algebra with convolution ω * θ := (ω ⊗ θ) ∘ Δ.
 L¹(G) has a dense involutive subalgebra L¹_{*}(G).

Example (commutative LCQGs: G = G)

 $L^{\infty}(\mathbb{G}) = L^{\infty}(G), \quad (L^{1}(\mathbb{G}), *) = (L^{1}(G), \text{ convolution})$

Example (co-commutative LCQGs: $\mathbb{G}=\hat{G}$).

The dual \hat{G} of G (as a LCQG) has

• $L^{\infty}(\mathbb{G}) = VN(G)$, $(L^{1}(\mathbb{G}), *) = (A(G), \text{ pointwise product})$

- $\Delta : VN(G) \rightarrow VN(G) \otimes VN(G)$ given by $\Delta(\lambda_g) := \lambda_g \otimes \lambda_g$
- $\varphi = \psi$ = the Plancherel weight on VN(*G*).

- Rich structure theory, including an unbounded antipode and duality G → Ĝ within the category satisfying Ĝ = G.
- L¹(G) is a Banach algebra with convolution ω * θ := (ω ⊗ θ) ∘ Δ.
 L¹(G) has a dense involutive subalgebra L¹_{*}(G).

Example (commutative LCQGs: G = G)

 $L^{\infty}(\mathbb{G}) = L^{\infty}(G), \quad (L^{1}(\mathbb{G}), *) = (L^{1}(G), \text{ convolution})$

Example (co-commutative LCQGs: $\mathbb{G}=\hat{G}$)

The dual \hat{G} of G (as a LCQG) has

• $L^{\infty}(\mathbb{G}) = VN(G)$, $(L^{1}(\mathbb{G}), *) = (A(G), \text{ pointwise product})$

- $\Delta : VN(G) \rightarrow VN(G) \otimes VN(G)$ given by $\Delta(\lambda_g) := \lambda_g \otimes \lambda_g$
- $\varphi = \psi$ = the Plancherel weight on VN(*G*).

- Rich structure theory, including an unbounded antipode and duality G → Ĝ within the category satisfying Ĝ = G.
- $L^1(\mathbb{G})$ is a Banach algebra with convolution $\omega * \theta := (\omega \otimes \theta) \circ \Delta$.
- *L*¹(G) has a dense involutive subalgebra *L*¹_{*}(G).

Example (commutative LCQGs: G = G)

 $L^{\infty}(\mathbb{G}) = L^{\infty}(G), \quad (L^{1}(\mathbb{G}), *) = (L^{1}(G), \text{ convolution})$

Example (co-commutative LCQGs: $\mathbf{G}=\hat{oldsymbol{G}}$)

The dual \hat{G} of G (as a LCQG) has

- $L^{\infty}(\mathbb{G}) = VN(G)$, $(L^{1}(\mathbb{G}), *) = (A(G), \text{ pointwise product})$
- $\Delta : VN(G) \rightarrow VN(G) \otimes VN(G)$ given by $\Delta(\lambda_g) := \lambda_g \otimes \lambda_g$
- $\varphi = \psi$ = the Plancherel weight on VN(*G*).

- Rich structure theory, including an unbounded antipode and duality G → Ĝ within the category satisfying Ĝ = G.
- $L^1(\mathbb{G})$ is a Banach algebra with convolution $\omega * \theta := (\omega \otimes \theta) \circ \Delta$.
- $L^1(\mathbb{G})$ has a dense involutive subalgebra $L^1_*(\mathbb{G})$.

Example (commutative LCQGs: G = G)

$$L^{\infty}(\mathbb{G}) = L^{\infty}(G), \quad (L^{1}(\mathbb{G}), *) = (L^{1}(G), \text{convolution})$$

Example (co-commutative LCQGs: $G = \hat{G}$)

The dual \hat{G} of G (as a LCQG) has

- $L^{\infty}(\mathbb{G}) = VN(G)$, $(L^{1}(\mathbb{G}), *) = (A(G), \text{ pointwise product})$
- $\Delta : VN(G) \rightarrow VN(G) \otimes VN(G)$ given by $\Delta(\lambda_g) := \lambda_g \otimes \lambda_g$
- $\varphi = \psi =$ the Plancherel weight on VN(*G*).

Every LCQG G has 3 equivalent "faces":

- von Neumann-algebraic: vN alg $L^{\infty}(\mathbb{G})$
- 2 reduced C^{*}-algebraic: C^{*}-algebra $C_0(\mathbb{G})$, weakly dense in $L^{\infty}(\mathbb{G})$
- In universal C^{*}-algebraic: C^{*}-algebra $C_0^u(\mathbb{G})$ with $C_0^u(\mathbb{G}) \twoheadrightarrow C_0(\mathbb{G})$.

G alg	$L^{\infty}(\mathbb{G})$	$C_0(\mathbb{G})$	$C_0^{\mathrm{u}}(\mathbb{G})$
G	$L^{\infty}(G)$	$C_0(G)$	$C_0(G)$
Ĝ	VN(G)	$C^*_{\mathrm{r}}(G)$	$C^*(G)$

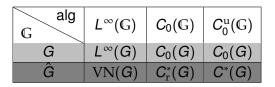
• $C_0(\mathbb{G})$ and $C_0^u(\mathbb{G})$ also carry a co-multiplication.

• We have $L^1(\mathbb{G}) \trianglelefteq C_0(\mathbb{G})^* \trianglelefteq C_0^u(\mathbb{G})^*$ canonically.

A D b 4 A b

Every LCQG G has 3 equivalent "faces":

- von Neumann-algebraic: vN alg $L^{\infty}(\mathbb{G})$
- 2 reduced C^{*}-algebraic: C^{*}-algebra $C_0(\mathbb{G})$, weakly dense in $L^{\infty}(\mathbb{G})$
- In universal C^* -algebraic: C^* -algebra $C_0^u(\mathbb{G})$ with $C_0^u(\mathbb{G}) \twoheadrightarrow C_0(\mathbb{G})$.



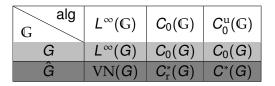
• $C_0(\mathbb{G})$ and $C_0^u(\mathbb{G})$ also carry a co-multiplication.

• We have $L^1(\mathbb{G}) \trianglelefteq C_0(\mathbb{G})^* \trianglelefteq C_0^u(\mathbb{G})^*$ canonically.

A D M A A A M M

Every LCQG G has 3 equivalent "faces":

- von Neumann-algebraic: vN alg $L^{\infty}(\mathbb{G})$
- 2 reduced C^{*}-algebraic: C^{*}-algebra $C_0(\mathbb{G})$, weakly dense in $L^{\infty}(\mathbb{G})$
- In universal C^{*}-algebraic: C^{*}-algebra $C_0^u(\mathbb{G})$ with $C_0^u(\mathbb{G}) \twoheadrightarrow C_0(\mathbb{G})$.



• $C_0(\mathbb{G})$ and $C_0^u(\mathbb{G})$ also carry a co-multiplication.

• We have $L^1(\mathbb{G}) \trianglelefteq C_0(\mathbb{G})^* \trianglelefteq C_0^u(\mathbb{G})^*$ canonically.

A D M A A A M M

• The left regular representation for groups: $\lambda : L^1(G) \to C^*_r(G)$ generalizes to

 $\lambda: L^1(\mathbb{G}) \to C_0(\widehat{\mathbb{G}}).$

• It extends to $C_0^{\mathrm{u}}(\mathbb{G})^*$ as

$$\lambda^{\mathrm{u}}: C_0^{\mathrm{u}}(\mathbb{G})^* \to M(C_0(\widehat{\mathbb{G}})).$$

The GNS constructions of (L[∞](G), φ) and (L[∞](Ĝ), φ̂) yield the same Hilbert space, L²(G). When G = G, L²(G) = L²(G). Let Λ : N_φ → L²(G) be the canonical injection.

< 🗇 🕨 < 🖻 🕨 <

• The left regular representation for groups: $\lambda : L^1(G) \to C^*_r(G)$ generalizes to

$$\lambda: L^1(\mathbb{G}) \to C_0(\widehat{\mathbb{G}}).$$

• It extends to $C_0^{\mathrm{u}}(\mathbb{G})^*$ as

$$\lambda^{\mathrm{u}}: C^{\mathrm{u}}_{0}(\mathbb{G})^{*} \to M(C_{0}(\hat{\mathbb{G}})).$$

The GNS constructions of (L[∞](G), φ) and (L[∞](Ĝ), φ̂) yield the same Hilbert space, L²(G). When G = G, L²(G) = L²(G). Let Λ : N_φ → L²(G) be the canonical injection.

• The left regular representation for groups: $\lambda : L^1(G) \to C^*_r(G)$ generalizes to

$$\lambda: L^1(\mathbb{G}) \to C_0(\hat{\mathbb{G}}).$$

It extends to C^u₀(G)* as

$$\lambda^{\mathrm{u}}: C^{\mathrm{u}}_{0}(\mathbb{G})^{*} \to M(C_{0}(\widehat{\mathbb{G}})).$$

The GNS constructions of (L[∞](G), φ) and (L[∞](Ĝ), φ̂) yield the same Hilbert space, L²(G). When G = G, L²(G) = L²(G). Let Λ : N_φ → L²(G) be the canonical injection.

• The left regular representation for groups: $\lambda : L^1(G) \to C^*_r(G)$ generalizes to

$$\lambda: L^1(\mathbb{G}) \to C_0(\hat{\mathbb{G}}).$$

• It extends to $C_0^{\mathrm{u}}(\mathbb{G})^*$ as

$$\lambda^{\mathrm{u}}: C^{\mathrm{u}}_{0}(\mathbb{G})^{*} \to M(C_{0}(\widehat{\mathbb{G}})).$$

The GNS constructions of (L[∞](G), φ) and (L[∞](Ĝ), φ̂) yield the same Hilbert space, L²(G). When G = G, L²(G) = L²(G). Let Λ : N_φ → L²(G) be the canonical injection.

Definitions (Daws, 2012; Daws & Salmi, 2013)

Let G be a LCQG. Say that $x \in L^{\infty}(\mathbb{G})$ is...

- a completely positive-definite function if...
- **2** a positive-definite function if $\langle x^*, \omega^* * \omega \rangle \ge 0$ for all $\omega \in L^1_*(\mathbb{G})$
- a Fourier–Stieltjes transform of a positive measure if

$$(\exists \hat{\mu} \in C_0^{\mathrm{u}}(\hat{\mathbb{G}})^*_+) \quad x = \hat{\lambda}^{\mathrm{u}}(\hat{\mu}) \qquad (\mathsf{note:} \ \hat{\lambda}^{\mathrm{u}} : C_0^{\mathrm{u}}(\hat{\mathbb{G}})^* \to M(C_0(\mathbb{G})))$$

a completely positive multiplier if there exists a completely positive multiplier of L¹(Ĝ) associated to x.

Theorem (Daws, 2012; Daws & Salmi, 2013)

 $(1) \iff (3) \iff (4) \Longrightarrow (2)$. If G is co-amenable, all are equivalent.

Let \mathbb{G} be a LCQG. Say that $x \in L^{\infty}(\mathbb{G})$ is...

- a completely positive-definite function if...
- **2** a positive-definite function if $\langle x^*, \omega^* * \omega \rangle \ge 0$ for all $\omega \in L^1_*(\mathbb{G})$
- a Fourier–Stieltjes transform of a positive measure if

$$(\exists \hat{\mu} \in C_0^{\mathrm{u}}(\hat{\mathbb{G}})^*_+) \quad x = \hat{\lambda}^{\mathrm{u}}(\hat{\mu}) \qquad (\mathsf{note:} \ \hat{\lambda}^{\mathrm{u}} : C_0^{\mathrm{u}}(\hat{\mathbb{G}})^* \to M(C_0(\mathbb{G})))$$

a completely positive multiplier if there exists a completely positive multiplier of L¹(Ĝ) associated to x.

Theorem (Daws, 2012; Daws & Salmi, 2013)

 $(1) \iff (3) \iff (4) \Longrightarrow (2)$. If G is co-amenable, all are equivalent.

Let G be a l.c. group.

Theorem (Raĭkov, 1947; Yoshizawa, 1949)

On the set of positive-definite functions of norm 1, the w^* -topology $\sigma(L^{\infty}(G), L^1(G))$ coincides with the topology of uniform convergence on compact subsets.

Actually, much more can be said.

Let G be a l.c. group.

Theorem (Raĭkov, 1947; Yoshizawa, 1949)

On the set of positive-definite functions of norm 1, the w^* -topology $\sigma(L^{\infty}(G), L^1(G))$ coincides with the topology of uniform convergence on compact subsets.

Actually, much more can be said.

Comparison of topologies

The A(G)-strict topology on B(G) is induced by the semi-norms $u \mapsto ||uf||_{A(G)}, f \in A(G)$.

Theorem A (Granirer & Leinert, 1981)

On the unit sphere of B(G), the w^* -topology coincides with the A(G)-strict topology.

Taking positive elements in B(G), we get Raĭkov, Yoshizawa. Generalizes results of Derighetti (1970) and McKennon (1971).

The $L^1(G)$ -strict topology on $M(G) := C_0(G)^*$ is induced by the semi-norms $\mu \mapsto ||\mu * f||_{L^1(G)}, f \in L^1(G)$.

Theorem B (Granirer & Leinert, 1981)

On the unit sphere of M(G), the *w*^{*}-topology coincides with the $L^{1}(G)$ -strict topology.

ヘロト ヘロト ヘヨト ヘヨト

The A(G)-strict topology on B(G) is induced by the semi-norms $u \mapsto ||uf||_{A(G)}, f \in A(G)$.

Theorem A (Granirer & Leinert, 1981)

On the unit sphere of B(G), the *w*^{*}-topology coincides with the A(G)-strict topology.

Taking positive elements in B(G), we get Raĭkov, Yoshizawa. Generalizes results of Derighetti (1970) and McKennon (1971).

The $L^1(G)$ -strict topology on $M(G) := C_0(G)^*$ is induced by the semi-norms $\mu \mapsto ||\mu * f||_{L^1(G)}, f \in L^1(G)$.

Theorem B (Granirer & Leinert, 1981)

On the unit sphere of M(G), the *w*^{*}-topology coincides with the $L^{1}(G)$ -strict topology.

ヘロト ヘヨト ヘヨト ヘヨト

The A(G)-strict topology on B(G) is induced by the semi-norms $u \mapsto ||uf||_{A(G)}, f \in A(G)$.

Theorem A (Granirer & Leinert, 1981)

On the unit sphere of B(G), the w^* -topology coincides with the A(G)-strict topology.

Taking positive elements in B(G), we get Raĭkov, Yoshizawa. Generalizes results of Derighetti (1970) and McKennon (1971).

The $L^1(G)$ -strict topology on $M(G) := C_0(G)^*$ is induced by the semi-norms $\mu \mapsto ||\mu * f||_{L^1(G)}$, $f \in L^1(G)$.

Theorem B (Granirer & Leinert, 1981)

On the unit sphere of M(G), the *w*^{*}-topology coincides with the $L^{1}(G)$ -strict topology.

The A(G)-strict topology on B(G) is induced by the semi-norms $u \mapsto ||uf||_{A(G)}, f \in A(G)$.

Theorem A (Granirer & Leinert, 1981)

On the unit sphere of B(G), the w^* -topology coincides with the A(G)-strict topology.

Taking positive elements in B(G), we get Raĭkov, Yoshizawa. Generalizes results of Derighetti (1970) and McKennon (1971).

The $L^{p}(G)$ -strict topology on $M(G) := C_{0}(G)^{*}$ is induced by the semi-norms $\mu \mapsto ||\mu * f||_{L^{p}(G)}, f \in L^{p}(G)$ $(1 \le p < \infty)$.

Theorem B (Granirer & Leinert, 1981)

On the unit sphere of M(G), the *w*^{*}-topology coincides with the $L^{p}(G)$ -strict topology.

Ami Viselter (University of Haifa, Israel)

ヘロマ 人間 アメヨア イロア

Hu, Neufang & Ruan asked (2012) whether Theorems A,B generalize to LCQGs. We answer this affirmatively.

Let G be a LCQG. The $L^1(\mathbb{G})$ -strict topology on $C_0^u(\mathbb{G})^*$ is induced by the semi-norms $\mu \mapsto \|\mu * \omega\|_{L^1(\mathbb{G})}, \omega \in L^1(\mathbb{G}).$

Theorem (Runde-V, 2014)

Let G be a LCQG. On the unit sphere of $C_0^u(G)^*$, the w^* -topology coincides with the $L^1(G)$ -strict topology.

How does this make sense?

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Hu, Neufang & Ruan asked (2012) whether Theorems A,B generalize to LCQGs. We answer this affirmatively.

Let G be a LCQG. The $L^{p}(G)$ -strict topology on $C_{0}^{u}(G)^{*}$ is induced by the semi-norms $\mu \mapsto \|\mu * \omega\|_{L^{p}(G)}, \omega \in L^{p}(G)$ $(1 \le p \le 2)$.

Theorem (Runde-V, 2014)

Let G be a LCQG. On the unit sphere of $C_0^u(G)^*$, the w^* -topology coincides with the $L^p(G)$ -strict topology.

How does this make sense?

Relying on the theory of the non-commutative L^p spaces, we have:

Theorem (Caspers, 2013)

For $1 \le p \le 2$, consider $L^p(\mathbb{G}) := L^p(L^{\infty}(\mathbb{G}))$. One can give a proper definition to convolution of elements of $L^1(\mathbb{G})$ with elements of $L^p(\mathbb{G})$.

Remark

Apparently it is not possible to do that for p > 2. Even classically, convolutions are not "well behaved" outside $L^1(G)$.

Generalizing this slightly, we have:

Proposition (Runde-V, 2014)

For $1 \le p \le 2$, consider $L^p(\mathbb{G}) := L^p(L^{\infty}(\mathbb{G}))$. One can give a proper definition to convolution of elements of $C_0^u(\mathbb{G})^*$ with elements of $L^p(\mathbb{G})$.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Relying on the theory of the non-commutative L^p spaces, we have:

Theorem (Caspers, 2013)

For $1 \le p \le 2$, consider $L^p(\mathbb{G}) := L^p(L^{\infty}(\mathbb{G}))$. One can give a proper definition to convolution of elements of $L^1(\mathbb{G})$ with elements of $L^p(\mathbb{G})$.

Remark

Apparently it is not possible to do that for p > 2. Even classically, convolutions are not "well behaved" outside $L^1(G)$.

Generalizing this slightly, we have:

Proposition (Runde-V, 2014)

For $1 \le p \le 2$, consider $L^p(\mathbb{G}) := L^p(L^{\infty}(\mathbb{G}))$. One can give a proper definition to convolution of elements of $C_0^u(\mathbb{G})^*$ with elements of $L^p(\mathbb{G})$.

イロン イロン イヨン イヨン 二日

Relying on the theory of the non-commutative L^p spaces, we have:

Theorem (Caspers, 2013)

For $1 \le p \le 2$, consider $L^p(\mathbb{G}) := L^p(L^{\infty}(\mathbb{G}))$. One can give a proper definition to convolution of elements of $L^1(\mathbb{G})$ with elements of $L^p(\mathbb{G})$.

Remark

Apparently it is not possible to do that for p > 2. Even classically, convolutions are not "well behaved" outside $L^1(G)$.

Generalizing this slightly, we have:

Proposition (Runde–V, 2014)

For $1 \le p \le 2$, consider $L^p(\mathbb{G}) := L^p(L^{\infty}(\mathbb{G}))$. One can give a proper definition to convolution of elements of $C_0^u(\mathbb{G})^*$ with elements of $L^p(\mathbb{G})$.

イロト イヨト イヨト イヨト

Theorem (Godement, 1948)

Let G be a l.c. group. Every positive-definite, square-integrable function over G has a square root: it is of the form g * g, $\tilde{g} = g \in L^2(G)$.

Theorem (Runde–V, 2014)

Let G be a co-amenable LCQG and $x \in L^{\infty}(G)$. If x is positive definite and $x \in \mathbb{N}_{\varphi}$ (that is, $\varphi(x^*x) < \infty$), then $x = \hat{\lambda}(\hat{\omega}_{\zeta})$ for some $\zeta \in \mathcal{P}^{\flat}_{\hat{\sigma}}$.

- 4 回 ト 4 回 ト

Theorem (Godement, 1948)

Let G be a l.c. group. Every positive-definite, square-integrable function over G has a square root: it is of the form g * g, $\tilde{g} = g \in L^2(G)$.

Theorem (Runde-V, 2014)

Let G be a co-amenable LCQG and $x \in L^{\infty}(G)$. If x is positive definite and $x \in \mathbb{N}_{\varphi}$ (that is, $\varphi(x^*x) < \infty$), then $x = \hat{\lambda}(\hat{\omega}_{\zeta})$ for some $\zeta \in \mathcal{P}^{\flat}_{\hat{\omega}}$.

Let $\mathcal A$ be a full left Hilbert algebra w/ completion $\mathcal H.$ Consider the cone

$$\mathcal{P}^{\flat} := \left\{ \eta \in \mathcal{H} : \langle \eta, \zeta^{\#} \zeta \rangle \geq \mathbf{0} \quad (\forall \zeta \in \mathcal{A}) \right\}$$

(appearing in works of Araki, Connes, Haagerup, Perdrizet, Takesaki). Say that $\eta \in \mathfrak{P}^{\flat}$ is integrable if

 $\sup \{ \langle \eta, \xi \rangle : \xi \in \mathcal{A} \text{ and } \pi(\xi) \text{ is a projection} \} < \infty.$

Example

- Let \mathcal{A} be the (full) left Hilbert algebra associated with the Plancherel weight on VN(*G*) ($\mathcal{A}_0 := C_c(G)$ with the inner product of $L^2(G)$, product = convolution, $\zeta^{\#} = \zeta^*$, $\mathcal{A} := \mathcal{A}_0^{\prime\prime}$).
- Then $\mathcal{H} = L^2(G)$, and if $f \in L^{\infty}(G) \cap L^2(G)$, then

 $f \in \mathcal{P}^{\flat} \iff f$ is positive definite.

Let $\mathcal A$ be a full left Hilbert algebra w/ completion $\mathcal H.$ Consider the cone

$$\mathcal{P}^{\flat} := \left\{ \eta \in \mathcal{H} : \langle \eta, \zeta^{\#} \zeta \rangle \geq \mathbf{0} \quad (\forall \zeta \in \mathcal{A}) \right\}$$

(appearing in works of Araki, Connes, Haagerup, Perdrizet, Takesaki). Say that $\eta \in \mathfrak{P}^{\flat}$ is integrable if

 $\sup \{ \langle \eta, \xi \rangle : \xi \in \mathcal{A} \text{ and } \pi(\xi) \text{ is a projection} \} < \infty.$

Example

- Let A be the (full) left Hilbert algebra associated with the Plancherel weight on VN(G) (A₀ := C_c(G) with the inner product of L²(G), product = convolution, ζ[#] = ζ^{*}, A := A₀["]).
- Then $\mathcal{H} = L^2(G)$, and if $f \in L^{\infty}(G) \cap L^2(G)$, then

 $f \in \mathcal{P}^{\flat} \iff f$ is positive definite.

Let $\mathcal A$ be a full left Hilbert algebra w/ completion $\mathcal H.$ Consider the cone

$$\mathcal{P}^{\flat} := \left\{ \eta \in \mathcal{H} : \langle \eta, \zeta^{\#} \zeta \rangle \ge \mathbf{0} \quad (\forall \zeta \in \mathcal{A}) \right\}$$

(appearing in works of Araki, Connes, Haagerup, Perdrizet, Takesaki). Say that $\eta \in \mathfrak{P}^{\flat}$ is integrable if

 $\sup \{ \langle \eta, \xi \rangle : \xi \in \mathcal{A} \text{ and } \pi(\xi) \text{ is a projection} \} < \infty.$

Example

 Let A be the (full) left Hilbert algebra associated with the Plancherel weight on VN(G) (A₀ := C_c(G) with the inner product of L²(G), product = convolution, ζ[#] = ζ^{*}, A := A₀["]).

• Then $\mathcal{H} = L^2(G)$, and if $f \in L^{\infty}(G) \cap L^2(G)$, then

 $f \in \mathcal{P}^{\flat} \quad \iff \quad f \text{ is positive definite.}$

Let $\mathcal A$ be a full left Hilbert algebra w/ completion $\mathcal H.$ Consider the cone

$$\mathcal{P}^{\flat} := \left\{ \eta \in \mathcal{H} : \langle \eta, \zeta^{\#} \zeta \rangle \geq \mathbf{0} \quad (\forall \zeta \in \mathcal{A}) \right\}$$

(appearing in works of Araki, Connes, Haagerup, Perdrizet, Takesaki). Say that $\eta \in \mathfrak{P}^{\flat}$ is integrable if

 $\sup \{ \langle \eta, \xi \rangle : \xi \in \mathcal{A} \text{ and } \pi(\xi) \text{ is a projection} \} < \infty.$

Example

- Let A be the (full) left Hilbert algebra associated with the Plancherel weight on VN(G) (A₀ := C_c(G) with the inner product of L²(G), product = convolution, ζ[#] = ζ^{*}, A := A₀["]).
- Then $\mathcal{H} = L^2(G)$, and if $f \in L^{\infty}(G) \cap L^2(G)$, then
 - $f \in \mathcal{P}^{\flat} \quad \iff \quad f \text{ is positive definite.}$

Let $\mathcal A$ be a full left Hilbert algebra w/ completion $\mathcal H.$ Consider the cone

$$\mathcal{P}^{\flat} := \left\{ \eta \in \mathcal{H} : \langle \eta, \zeta^{\#} \zeta \rangle \ge \mathbf{0} \quad (\forall \zeta \in \mathcal{A}) \right\}$$

(appearing in works of Araki, Connes, Haagerup, Perdrizet, Takesaki). Say that $\eta \in \mathfrak{P}^{\flat}$ is integrable if

 $\sup \{ \langle \eta, \xi \rangle : \xi \in \mathcal{A} \text{ and } \pi(\xi) \text{ is a projection} \} < \infty.$

Example

- Let A be the (full) left Hilbert algebra associated with the Plancherel weight on VN(G) (A₀ := C_c(G) with the inner product of L²(G), product = convolution, ζ[#] = ζ^{*}, A := A₀["]).
- Then $\mathcal{H} = L^2(G)$, and if $f \in L^{\infty}(G) \cap L^2(G)$, then

 $f \in \mathcal{P}^{\flat} \iff f$ is positive definite.

Theorem (J. Phillips, 1973)

Let $\eta \in \mathcal{P}^{\flat}$. Then η is integrable \iff it has a square root $\zeta \in \mathcal{P}^{\flat}$, namely $\langle \xi, \eta \rangle = \langle \pi(\xi)\zeta, \zeta \rangle$ for every $\xi \in \mathcal{A}$.

Going back to Godement's Theorem:

- Take \mathcal{A} from the last example.
- Phillips proved that every positive-definite function in L²(G) is integrable (= in A(G)).
- Hence, Phillips' Theorem implies Godement's.

< 🗇 🕨 < 🖻 🕨

Theorem (J. Phillips, 1973)

Let $\eta \in \mathbb{P}^{\flat}$. Then η is integrable \iff it has a square root $\zeta \in \mathbb{P}^{\flat}$, namely $\langle \xi, \eta \rangle = \langle \pi(\xi)\zeta, \zeta \rangle$ for every $\xi \in \mathcal{A}$.

Going back to Godement's Theorem:

- Take \mathcal{A} from the last example.
- Phillips proved that every positive-definite function in L²(G) is integrable (= in A(G)).
- Hence, Phillips' Theorem implies Godement's.

Let G be a co-amenable LCQG and $x \in L^{\infty}(G)$. If x is positive definite and $x \in \mathbb{N}_{\varphi}$ (that is, $\varphi(x^*x) < \infty$), then $x = \hat{\lambda}(\hat{\omega}_{\zeta})$ for some $\zeta \in \mathcal{P}^{\flat}_{\hat{\omega}}$.

Proof (sketch)

We follow similar lines:

- We let A_{\(\heta\)} be the (full) left Hilbert algebra associated with the left Haar weight \(\heta\) of \(\heta\).
- 2 If $x \in \mathbb{N}_{\varphi}$ (in $L^{\infty}(\mathbb{G})$ and "square integrable"), then

x is positive definite $\iff \Lambda(x) \in \mathbb{P}_{\hat{\omega}}^{\flat}$

- 3 In that case, $\Lambda(x)$ is integrable.
- In Phillips' Theorem applies $\implies \Lambda(x)$ has a square root in $\mathcal{P}^{\flat}_{\hat{a}}$

Let G be a co-amenable LCQG and $x \in L^{\infty}(G)$. If x is positive definite and $x \in \mathbb{N}_{\varphi}$ (that is, $\varphi(x^*x) < \infty$), then $x = \hat{\lambda}(\hat{\omega}_{\zeta})$ for some $\zeta \in \mathcal{P}^{\flat}_{\hat{\omega}}$.

Proof (sketch)

We follow similar lines:

- We let A_{\(\heta\)} be the (full) left Hilbert algebra associated with the left Haar weight \(\heta\) of \(\heta\).
- ② If *x* ∈ \mathbb{N}_{φ} (in *L*[∞](G) and "square integrable"), then

x is positive definite $\iff \Lambda(x) \in \mathcal{P}_{\hat{\omega}}^{\flat}$.

- 3 In that case, $\Lambda(x)$ is integrable.
- In Phillips' Theorem applies $\implies \Lambda(x)$ has a square root in $\mathcal{P}^{\flat}_{\hat{a}}$

Let G be a co-amenable LCQG and $x \in L^{\infty}(G)$. If x is positive definite and $x \in \mathbb{N}_{\varphi}$ (that is, $\varphi(x^*x) < \infty$), then $x = \hat{\lambda}(\hat{\omega}_{\zeta})$ for some $\zeta \in \mathcal{P}^{\flat}_{\hat{\omega}}$.

Proof (sketch)

We follow similar lines:

- We let A_{\(\heta\)} be the (full) left Hilbert algebra associated with the left Haar weight \(\heta\) of \(\heta\).
- ② If *x* ∈ \mathbb{N}_{φ} (in *L*[∞](G) and "square integrable"), then

x is positive definite $\iff \Lambda(x) \in \mathcal{P}_{\hat{\omega}}^{\flat}$.

In that case, $\Lambda(x)$ is integrable.

) Phillips' Theorem applies $\implies \Lambda(x)$ has a square root in ${\mathbb P}^{\flat}_{\hat{a}}$

Let G be a co-amenable LCQG and $x \in L^{\infty}(G)$. If x is positive definite and $x \in \mathbb{N}_{\varphi}$ (that is, $\varphi(x^*x) < \infty$), then $x = \hat{\lambda}(\hat{\omega}_{\zeta})$ for some $\zeta \in \mathcal{P}^{\flat}_{\hat{\omega}}$.

Proof (sketch)

We follow similar lines:

- We let A_{\(\heta\)} be the (full) left Hilbert algebra associated with the left Haar weight \(\heta\) of \(\heta\).
- ② If *x* ∈ \mathbb{N}_{φ} (in *L*[∞](G) and "square integrable"), then

x is positive definite $\iff \Lambda(x) \in \mathcal{P}_{\hat{\omega}}^{\flat}$.

- In that case, $\Lambda(x)$ is integrable.
- Phillips' Theorem applies $\implies \Lambda(x)$ has a square root in $\mathcal{P}^{\flat}_{\hat{o}}$.

Amenability

Definition

A locally compact group G is amenable if it admits a left-invariant mean: a state of $L^{\infty}(G)$ that is invariant under left translations.

Examples

Compact groups, abelian (even solvable) groups, locally-finite groups. Non-example: \mathbb{F}_n , $n \ge 2$.

Definitions

A LCQG G is amenable if it admits a left-invariant mean: a state *m* of $L^{\infty}(\mathbb{G})$ with $m((\omega \otimes id)\Delta(x)) = m(x)\omega(\mathbb{1})$ for all $x \in L^{\infty}(\mathbb{G}), \omega \in L^{1}(\mathbb{G})$.

Theorem

G is amenable $_? \cong_? \hat{G}$ is co-amenable.

Ami Viselter (University of Haifa, Israel)

On positive definiteness over LCQGs

WCOAS 2014 19 / 26

Amenability

Definition

A locally compact group G is amenable if it admits a left-invariant mean: a state of $L^{\infty}(G)$ that is invariant under left translations.

Examples

Compact groups, abelian (even solvable) groups, locally-finite groups. Non-example: \mathbb{F}_n , $n \ge 2$.

Definitions

A LCQG G is amenable if it admits a left-invariant mean: a state *m* of $L^{\infty}(\mathbb{G})$ with $m((\omega \otimes id)\Delta(x)) = m(x)\omega(\mathbb{1})$ for all $x \in L^{\infty}(\mathbb{G})$, $\omega \in L^{1}(\mathbb{G})$.

Theorem

G is amenable $_? \cong_? \hat{G}$ is co-amenable.

Ami Viselter (University of Haifa, Israel)

On positive definiteness over LCQGs

Amenability

Definition

A locally compact group G is amenable if it admits a left-invariant mean: a state of $L^{\infty}(G)$ that is invariant under left translations.

Examples

Compact groups, abelian (even solvable) groups, locally-finite groups. Non-example: \mathbb{F}_n , $n \ge 2$.

Definitions

A LCQG G is amenable if it admits a left-invariant mean: a state *m* of $L^{\infty}(\mathbb{G})$ with $m((\omega \otimes id)\Delta(x)) = m(x)\omega(\mathbb{1})$ for all $x \in L^{\infty}(\mathbb{G})$, $\omega \in L^{1}(\mathbb{G})$.

Theorem

G is amenable $\widehat{G}_{?} \cong \widehat{G}_{?}$ is co-amenable.

Let G be a locally compact group.

Definition

Say that $\mu \in M(G)$ is positive-definite if $\int f * \tilde{f} d\mu \ge 0$ for all $f \in C_c(G)$. Equivalently: $\lambda(\mu) \ge 0$ (recall: it belongs to $M(C_r^*(G))$).

Theorem (Godement, 1948; extended by Valette, 1998)

TFAE:

- G is amenable;
- ② $\int f d\mu \ge 0$ for each pos-def $\mu \in M(G)$ and pos-def function f;
- \bigcirc $\int d\mu ≥ 0$ for each pos-def $\mu \in M(G)$;

every pos-def function is the compact-open limit of functions of the form g * ğ, g ∈ C_c(G).

Let G be a locally compact group.

Definition

Say that $\mu \in M(G)$ is positive-definite if $\int f * \tilde{f} d\mu \ge 0$ for all $f \in C_c(G)$. Equivalently: $\lambda(\mu) \ge 0$ (recall: it belongs to $M(C_r^*(G))$).

Theorem (Godement, 1948; extended by Valette, 1998)

TFAE:

- G is amenable;
- 2) $\int f d\mu \ge 0$ for each pos-def $\mu \in M(G)$ and pos-def function f;
- $\int d\mu \ge 0$ for each pos-def $\mu \in M(G)$;

every pos-def function is the compact-open limit of functions of the form g ∗ ğ, g ∈ C_c(G).

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let G be a LCQG.

Definition (Runde-V, 2014)

Say that $\mu \in C_0(\mathbb{G})^*$ is positive-definite if $\lambda(\mu) \ge 0$ (recall: it belongs to $M(C_0(\hat{\mathbb{G}}))$).

Theorem (Runde–V, 2014)

If G is co-amenable, then TFAE:

- G is co-amenable;
- 2 $\mu(x^*) \ge 0$ for each pos-def $\mu \in C_0(\mathbb{G})^*$ and pos-def function x;
- $\mu(1) \ge 0$ for each pos-def $\mu \in C_0(\mathbb{G})^*$;
- every pos-def function is the strict limit in M(C₀(G)) of a bounded net of pos-def functions in λ̂(L¹(Ĝ)₊) ∩ N_φ.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Lau & Losert, 1986; Kaniuth & Lau, 2000)

Let *G* be a locally compact group and *H* be a closed subgroup of *G*. Say that *G* has the *H*-separation property if for every $g \in G \setminus H$ there exists a positive-definite function φ on *G* with $\varphi|_H \equiv 1$ but $\varphi(g) \neq 1$.

Theorem

G has the H-separation property in these cases:

- H is normal (easy)
- H is compact (Eymard, 1964)
- H is open (Hewitt & Ross)
- G is [SIN] (Kaniuth & Lau, based on Forrest, 1992).

Example

Let G = the "ax + b group" and $H \le G$. Then:

Ami Viselter (University of Haifa, Israel)

On positive definiteness over LCQGs

WCOAS 2014 22 / 26

Definition (Lau & Losert, 1986; Kaniuth & Lau, 2000)

Let *G* be a locally compact group and *H* be a closed subgroup of *G*. Say that *G* has the *H*-separation property if for every $g \in G \setminus H$ there exists a positive-definite function φ on *G* with $\varphi|_H \equiv 1$ but $\varphi(g) \neq 1$.

Theorem

G has the H-separation property in these cases:

- H is normal (easy)
- H is compact (Eymard, 1964)
- H is open (Hewitt & Ross)
- G is [SIN] (Kaniuth & Lau, based on Forrest, 1992).

Example

Let G = the "ax + b group" and $H \le G$. Then:

Ami Viselter (University of Haifa, Israel)

On positive definiteness over LCQGs

22/26

Definition (Lau & Losert, 1986; Kaniuth & Lau, 2000)

Let *G* be a locally compact group and *H* be a closed subgroup of *G*. Say that *G* has the *H*-separation property if for every $g \in G \setminus H$ there exists a positive-definite function φ on *G* with $\varphi|_H \equiv 1$ but $\varphi(g) \neq 1$.

Theorem

G has the H-separation property in these cases:

- H is normal (easy)
- H is compact (Eymard, 1964)
- H is open (Hewitt & Ross)
- G is [SIN] (Kaniuth & Lau, based on Forrest, 1992).

Example

Let G = the "ax + b group" and $H \le G$. Then: *G* has the *H*-separation property \iff *H* is either compact or normal Ami Viselter (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 2

22/26

Definition (Lau & Losert, 1986; Kaniuth & Lau, 2000)

Let *G* be a locally compact group and *H* be a closed subgroup of *G*. Say that *G* has the *H*-separation property if for every $g \in G \setminus H$ there exists a positive-definite function φ on *G* with $\varphi|_H \equiv 1$ but $\varphi(g) \neq 1$.

Theorem

- G has the H-separation property in these cases:
 - H is normal (easy)
 - H is compact (Eymard, 1964)
 - H is open (Hewitt & Ross)
 - G is [SIN] (Kaniuth & Lau, based on Forrest, 1992).

Example

Let G = the "ax + b group" and $H \le G$. Then: *G* has the *H*-separation property \iff *H* is either compact or normal Ami Visetler (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 2

Definition (Daws, Kasprzak, Skalski & Sołtan, 2012)

Let \mathbb{G} , \mathbb{H} be LCQGs. Say that \mathbb{H} is a closed quantum subgroup of \mathbb{G} if there exists a surjective *-homomorphism $\Phi : C_0^u(\mathbb{G}) \to C_0^u(\mathbb{H})$ intertwining the co-multiplications.

Such a map has a dual, $\hat{\Phi} : C_0^u(\hat{\mathbb{H}}) \to M(C_0^u(\hat{\mathbb{G}}))$ (Meyer, Roy & Woronowicz, 2012).

Example

If $H \leq G$, then Φ is the restriction map $C_0(G) \rightarrow C_0(H)$, $f \mapsto f|_H$, and the dual $\hat{\Phi}$ is the natural embedding $C^*(H) \hookrightarrow M(C^*(G))$.

If $H \leq G$, then Φ is the restriction map $C_0(G) \rightarrow C_0(H)$, $f \mapsto f|_H$, and the dual $\hat{\Phi}$ is the natural embedding $C^*(H) \hookrightarrow M(C^*(G))$.

Definition (Runde-V, 2014)

Say that G has the \mathbb{H} -separation property if whenever μ is a state of $C_0^{\mathrm{u}}(\mathbb{G})$ such that $(\mu \otimes \mathrm{id})(\mathbb{W}_{\mathrm{G}}) \notin \hat{\Phi}(M(C_0^{\mathrm{u}}(\hat{\mathbb{H}})))$, there is a state $\hat{\omega}$ of $C_0^{\mathrm{u}}(\hat{\mathbb{G}})$ so that $\Phi((\mathrm{id} \otimes \hat{\omega})(\mathbb{W}_{\mathrm{G}})) = \mathbb{1}$ but $\mu((\mathrm{id} \otimes \hat{\omega})(\mathbb{W}_{\mathrm{G}})) \neq 1$.

In English:

if μ is a state of $C_0^u(\mathbb{G})$ that is "not supported by \mathbb{H} ", then there exists a positive-definite function that "restricts to 1 on \mathbb{H} " but is "not 1 w.r.t. μ ".

If $H \leq G$, then Φ is the restriction map $C_0(G) \rightarrow C_0(H)$, $f \mapsto f|_H$, and the dual $\hat{\Phi}$ is the natural embedding $C^*(H) \hookrightarrow M(C^*(G))$.

Definition (Runde-V, 2014)

Say that G has the \mathbb{H} -separation property if whenever μ is a state of $C_0^{\mathrm{u}}(\mathbb{G})$ such that $(\mu \otimes \mathrm{id})(\mathbb{W}_{\mathbb{G}}) \notin \hat{\Phi}(M(C_0^{\mathrm{u}}(\hat{\mathbb{H}})))$, there is a state $\hat{\omega}$ of $C_0^{\mathrm{u}}(\hat{\mathbb{G}})$ so that $\Phi((\mathrm{id} \otimes \hat{\omega})(\mathbb{W}_{\mathbb{G}})) = \mathbb{1}$ but $\mu((\mathrm{id} \otimes \hat{\omega})(\mathbb{W}_{\mathbb{G}})) \neq 1$.

In English:

if μ is a state of $C_0^u(\mathbb{G})$ that is "not supported by IH", then there exists a positive-definite function that "restricts to 1 on IH" but is "not 1 w.r.t. μ ".

If $H \leq G$, then Φ is the restriction map $C_0(G) \rightarrow C_0(H)$, $f \mapsto f|_H$, and the dual $\hat{\Phi}$ is the natural embedding $C^*(H) \hookrightarrow M(C^*(G))$.

Definition (Runde-V, 2014)

Say that G has the \mathbb{H} -separation property if whenever μ is a state of $C_0^{\mathrm{u}}(\mathbb{G})$ such that $(\mu \otimes \mathrm{id})(\mathbb{W}_{\mathrm{G}}) \notin \hat{\Phi}(M(C_0^{\mathrm{u}}(\hat{\mathrm{H}})))$, there is a state $\hat{\omega}$ of $C_0^{\mathrm{u}}(\hat{\mathrm{G}})$ so that $\Phi((\mathrm{id} \otimes \hat{\omega})(\mathbb{W}_{\mathrm{G}})) = \mathbb{1}$ but $\mu((\mathrm{id} \otimes \hat{\omega})(\mathbb{W}_{\mathrm{G}})) \neq 1$.

In English:

if μ is a state of $C_0^u(\mathbb{G})$ that is "not supported by \mathbb{H} ", then there exists a positive-definite function that "restricts to 1 on \mathbb{H} " but is "not 1 w.r.t. μ ".

・ロト ・四ト ・ヨト ・ヨト

If $H \leq G$, then Φ is the restriction map $C_0(G) \rightarrow C_0(H)$, $f \mapsto f|_H$, and the dual $\hat{\Phi}$ is the natural embedding $C^*(H) \hookrightarrow M(C^*(G))$.

Definition (Runde-V, 2014)

Say that G has the \mathbb{H} -separation property if whenever μ is a state of $C_0^{\mathrm{u}}(\mathbb{G})$ such that $(\mu \otimes \mathrm{id})(\mathbb{W}_{\mathbb{G}}) \notin \hat{\Phi}(M(C_0^{\mathrm{u}}(\hat{\mathbb{H}})))$, there is a state $\hat{\omega}$ of $C_0^{\mathrm{u}}(\hat{\mathbb{G}})$ so that $\Phi((\mathrm{id} \otimes \hat{\omega})(\mathbb{W}_{\mathbb{G}})) = \mathbb{1}$ but $\mu((\mathrm{id} \otimes \hat{\omega})(\mathbb{W}_{\mathbb{G}})) \neq 1$.

In English:

if μ is a state of $C_0^u(\mathbb{G})$ that is "not supported by \mathbb{H} ", then there exists a positive-definite function that "restricts to 1 on \mathbb{H} " but is "not 1 w.r.t. μ ".

э

・ロト ・四ト ・ヨト ・ヨト

If $H \leq G$, then Φ is the restriction map $C_0(G) \rightarrow C_0(H)$, $f \mapsto f|_H$, and the dual $\hat{\Phi}$ is the natural embedding $C^*(H) \hookrightarrow M(C^*(G))$.

Definition (Runde-V, 2014)

Say that G has the \mathbb{H} -separation property if whenever μ is a state of $C_0^{\mathrm{u}}(\mathbb{G})$ such that $(\mu \otimes \mathrm{id})(\mathbb{W}_{\mathrm{G}}) \notin \hat{\Phi}(M(C_0^{\mathrm{u}}(\hat{\mathrm{H}})))$, there is a state $\hat{\omega}$ of $C_0^{\mathrm{u}}(\hat{\mathrm{G}})$ so that $\Phi((\mathrm{id} \otimes \hat{\omega})(\mathbb{W}_{\mathrm{G}})) = \mathbb{1}$ but $\mu((\mathrm{id} \otimes \hat{\omega})(\mathbb{W}_{\mathrm{G}})) \neq 1$.

In English:

if μ is a state of $C_0^u(\mathbb{G})$ that is "not supported by \mathbb{H} ", then there exists a positive-definite function that "restricts to 1 on \mathbb{H} " but is "not 1 w.r.t. μ ".

Definitions (Woronowicz)

A LCQG \mathbb{H} is compact if $\mathbb{1} \in C_0(\mathbb{H})$.

The dual $\hat{\mathbb{H}}$ is then called discrete. It admits a (bounded) co-unit $\hat{\epsilon} \in C_0(\hat{\mathbb{H}})^*$ and a central minimal projection $\hat{p} \in L^{\infty}(\hat{\mathbb{H}})$ so that $\hat{a}\hat{p} = \hat{\epsilon}(\hat{a})\hat{p} = \hat{p}\hat{a}$ for every $\hat{a} \in L^{\infty}(\hat{\mathbb{H}})$.

Let G be a LCQG and \mathbb{H} a compact quantum subgroup of G. Then there is an embedding $\gamma : L^{\infty}(\hat{\mathbb{H}}) \hookrightarrow L^{\infty}(\hat{\mathbb{G}})$ "interacting well with $\hat{\Phi}$ ".

Theorem (Runde–V, 2014)

lf

$(\forall \hat{z} \in M(C_0(\hat{\mathbb{G}}))) \qquad \hat{\Delta}_{\mathbb{G}}(\hat{z})(\gamma(\hat{p}) \otimes \mathbb{1}) = \gamma(\hat{p}) \otimes \hat{z} \implies \hat{z} \in \operatorname{Im} \gamma,$

then G has the H-separation property.

Definitions (Woronowicz)

A LCQG \mathbb{H} is compact if $\mathbb{1} \in C_0(\mathbb{H})$.

The dual $\hat{\mathbb{H}}$ is then called discrete. It admits a (bounded) co-unit $\hat{\epsilon} \in C_0(\hat{\mathbb{H}})^*$ and a central minimal projection $\hat{p} \in L^{\infty}(\hat{\mathbb{H}})$ so that $\hat{a}\hat{p} = \hat{\epsilon}(\hat{a})\hat{p} = \hat{p}\hat{a}$ for every $\hat{a} \in L^{\infty}(\hat{\mathbb{H}})$.

Let G be a LCQG and \mathbb{H} a compact quantum subgroup of G. Then there is an embedding $\gamma : L^{\infty}(\hat{\mathbb{H}}) \hookrightarrow L^{\infty}(\hat{\mathbb{G}})$ "interacting well with $\hat{\Phi}$ ".

Theorem (Runde–V, 2014)

lf

$(\forall \hat{z} \in M(C_0(\hat{\mathbb{G}}))) \qquad \hat{\Delta}_{\mathbb{G}}(\hat{z})(\gamma(\hat{p}) \otimes \mathbb{1}) = \gamma(\hat{p}) \otimes \hat{z} \implies \hat{z} \in \operatorname{Im} \gamma,$

then G has the H-separation property.

Definitions (Woronowicz)

A LCQG \mathbb{H} is compact if $\mathbb{1} \in C_0(\mathbb{H})$.

The dual $\hat{\mathbb{H}}$ is then called discrete. It admits a (bounded) co-unit $\hat{\epsilon} \in C_0(\hat{\mathbb{H}})^*$ and a central minimal projection $\hat{p} \in L^{\infty}(\hat{\mathbb{H}})$ so that $\hat{a}\hat{p} = \hat{\epsilon}(\hat{a})\hat{p} = \hat{p}\hat{a}$ for every $\hat{a} \in L^{\infty}(\hat{\mathbb{H}})$.

Let G be a LCQG and \mathbb{H} a compact quantum subgroup of G. Then there is an embedding $\gamma : L^{\infty}(\hat{\mathbb{H}}) \hookrightarrow L^{\infty}(\hat{\mathbb{G}})$ "interacting well with $\hat{\Phi}$ ".

Theorem (Runde-V, 2014)

lf

$$(\forall \hat{z} \in M(C_0(\hat{\mathbb{G}}))) \qquad \hat{\Delta}_{\mathbb{G}}(\hat{z})(\gamma(\hat{p}) \otimes \mathbb{1}) = \gamma(\hat{p}) \otimes \hat{z} \implies \hat{z} \in \operatorname{Im} \gamma,$$

then $\mathbb G$ has the $\mathbb H\text{-separation}$ property.

Ami Viselter (University of Haifa, Israel)

On positive definiteness over LCQGs

This condition holds, even for every $\hat{z} \in L^{\infty}(\hat{\mathbb{G}})$, in these cases:

- The commutative case: $H \leq G$
- The co-commutative case:
 G = Ĝ and H = G/A where A ≤ G is open
- Cocycle bicrossed products
 - ► IH is a compact normal quantum subgroup of G whose ambient extension is cleft
 - ► the construction involves two LCQGs, G₁, G₂
 - it is a (von Neumann algebraic) generalization of the Packer–Raeburn twisted crossed products.

Thank you for your attention!

4 A N