
On positive definiteness over locally compact
quantum groups

Ami Viselter

(Jointly with Volker Runde)

University of Haifa, Israel

West Coast Operator Algebra Seminar
University of Denver, November 2, 2014

Ami Viselter (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 1 / 26



Outline

Introduction
I Positive-definite functions
I Locally compact quantum groups (LCQGs)
I Positive-definite functions over LCQGs

Topologies on the positive-definite functions
I Results of Granirer and Leinert
I Over LCQGs

Square-integrable positive-definite functions
I Results of Godement and Phillips
I Over LCQGs

Amenability
I Quick intro & Results of Godement and Valette
I Over LCQGs

The separation property
I Basic results for groups
I Over LCQGs

Ami Viselter (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 2 / 26



Outline

Introduction
I Positive-definite functions
I Locally compact quantum groups (LCQGs)
I Positive-definite functions over LCQGs

Topologies on the positive-definite functions
I Results of Granirer and Leinert
I Over LCQGs

Square-integrable positive-definite functions
I Results of Godement and Phillips
I Over LCQGs

Amenability
I Quick intro & Results of Godement and Valette
I Over LCQGs

The separation property
I Basic results for groups
I Over LCQGs

Ami Viselter (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 2 / 26



Outline

Introduction
I Positive-definite functions
I Locally compact quantum groups (LCQGs)
I Positive-definite functions over LCQGs

Topologies on the positive-definite functions
I Results of Granirer and Leinert
I Over LCQGs

Square-integrable positive-definite functions
I Results of Godement and Phillips
I Over LCQGs

Amenability
I Quick intro & Results of Godement and Valette
I Over LCQGs

The separation property
I Basic results for groups
I Over LCQGs

Ami Viselter (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 2 / 26



Outline

Introduction
I Positive-definite functions
I Locally compact quantum groups (LCQGs)
I Positive-definite functions over LCQGs

Topologies on the positive-definite functions
I Results of Granirer and Leinert
I Over LCQGs

Square-integrable positive-definite functions
I Results of Godement and Phillips
I Over LCQGs

Amenability
I Quick intro & Results of Godement and Valette
I Over LCQGs

The separation property
I Basic results for groups
I Over LCQGs

Ami Viselter (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 2 / 26



Outline

Introduction
I Positive-definite functions
I Locally compact quantum groups (LCQGs)
I Positive-definite functions over LCQGs

Topologies on the positive-definite functions
I Results of Granirer and Leinert
I Over LCQGs

Square-integrable positive-definite functions
I Results of Godement and Phillips
I Over LCQGs

Amenability
I Quick intro & Results of Godement and Valette
I Over LCQGs

The separation property
I Basic results for groups
I Over LCQGs

Ami Viselter (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 2 / 26



Positive-definite functions

G – a locally compact group

Definition (Godement, 1948)
A continuous function x : G → C is positive definite if(

x(s−1
i sj)

)
1≤i,j≤n

is positive in Mn whenever s1, . . . , sn ∈ G.

Such x is always bounded. In fact, ‖x‖ = x(e).

Examples
1 Any character of G is positive definite.

For g : G → C, let g̃(s) := g(s−1).
2 If g ∈ L2(G) then g ∗ g̃ is positive definite.
3 x is positive definite ⇐⇒ x is positive definite.
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Positive-definite functions

Theorem (Bochner, Weil, Godement, De Cannière–Haagerup)
Let x : G → C be continuous and bounded. Then TFAE:

1 x is positive definite;
2 〈x , f ∗ ∗ f〉 ≥ 0 for each f ∈ L1(G), where f ∗(s) := f(s−1)∆(s−1);
3 There is a continuous unitary rep π of G on Hπ and ξ ∈ Hπ s.t.

x(g) =
〈
π(g)ξ, ξ

〉
(∀g ∈ G);

Equivalently, it is (identified with) a positive element of B(G);
4 x is a completely positive multiplier of A(G).

Legend
A(G) := VN(G)∗ (the Fourier algebra), realized in C0(G) as

{f ∗ g̃ : f ,g ∈ L2(G)}.

B(G) := C∗(G)∗ (the Fourier–Stieltjes algebra), realized in Cb(G).
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A group as a quantum group

G – a locally compact group.
1 A von Neumann algebra: L∞(G)

2 Co-multiplication: the ∗-homomorphism
∆ : L∞(G)→ L∞(G) ⊗ L∞(G) � L∞(G ×G) defined by

(∆(f))(t , s) := f(ts) (f ∈ L∞(G)).

By associativity, we have (∆ ⊗ id)∆ = (id ⊗∆)∆.

3 Left and right Haar measures. View them as n.s.f. weights
ϕ,ψ : L∞(G)+ → [0,∞] by ϕ(f) :=

∫
G f(t) dt`, ψ(f) :=

∫
G f(t) dtr .
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Locally compact quantum groups

Motivation
Lack of Pontryagin duality for non-Abelian l.c. groups.

Definition (Kustermans & Vaes, 2000)
A locally compact quantum group is a pair G = (M,∆) such that:

1 M is a von Neumann algebra
2 ∆ : M → M ⊗M is a co-multiplication: a normal, faithful, unital
∗-homomorphism which is co-associative, i.e.,

(∆ ⊗ id)∆ = (id ⊗∆)∆

3 There are two n.s.f. weights ϕ,ψ on M (the Haar weights) with:
I ϕ((ω ⊗ id)∆(x)) = ω(1)ϕ(x) when ω ∈ M+

∗ , x ∈ M+ and ϕ(x) < ∞
I ψ((id ⊗ ω)∆(x)) = ω(1)ψ(x) when ω ∈ M+

∗ , x ∈ M+ and ψ(x) < ∞.

Denote L∞(G) := M and L1(G) := M∗.
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Locally compact quantum groups

Rich structure theory, including an unbounded antipode and
duality G 7→ Ĝ within the category satisfying ˆ̂

G = G.
L1(G) is a Banach algebra with convolution ω ∗ θ := (ω ⊗ θ) ◦∆.
L1(G) has a dense involutive subalgebra L1

∗ (G).

Example (commutative LCQGs: G = G)

L∞(G) = L∞(G), (L1(G), ∗) = (L1(G), convolution)

Example (co-commutative LCQGs: G = Ĝ)

The dual Ĝ of G (as a LCQG) has
L∞(G) = VN(G), (L1(G), ∗) = (A(G),pointwise product)
∆ : VN(G)→ VN(G) ⊗ VN(G) given by ∆(λg) := λg ⊗ λg

ϕ = ψ = the Plancherel weight on VN(G).
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The dual Ĝ of G (as a LCQG) has
L∞(G) = VN(G), (L1(G), ∗) = (A(G),pointwise product)
∆ : VN(G)→ VN(G) ⊗ VN(G) given by ∆(λg) := λg ⊗ λg

ϕ = ψ = the Plancherel weight on VN(G).

Ami Viselter (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 7 / 26



Locally compact quantum groups

Every LCQG G has 3 equivalent “faces”:
1 von Neumann-algebraic: vN alg L∞(G)

2 reduced C∗-algebraic: C∗-algebra C0(G), weakly dense in L∞(G)

3 universal C∗-algebraic: C∗-algebra Cu
0 (G) with Cu

0 (G)� C0(G).

G
alg

L∞(G) C0(G) Cu
0 (G)

G L∞(G) C0(G) C0(G)

Ĝ VN(G) C∗r (G) C∗(G)

C0(G) and Cu
0 (G) also carry a co-multiplication.

We have L1(G) E C0(G)∗ E Cu
0 (G)∗ canonically.
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Locally compact quantum groups

The left regular representation for groups: λ : L1(G)→ C∗r (G)
generalizes to

λ : L1(G)→ C0(Ĝ).

It extends to Cu
0 (G)∗ as

λu : Cu
0 (G)∗ → M(C0(Ĝ)).

The GNS constructions of (L∞(G), ϕ) and (L∞(Ĝ), ϕ̂) yield the
same Hilbert space, L2(G). When G = G, L2(G) = L2(G).
Let Λ : Nϕ → L2(G) be the canonical injection.
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It extends to Cu
0 (G)∗ as

λu : Cu
0 (G)∗ → M(C0(Ĝ)).
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Positive-definite functions over LCQGs

Definitions (Daws, 2012; Daws & Salmi, 2013)
Let G be a LCQG. Say that x ∈ L∞(G) is...

1 a completely positive-definite function if...
2 a positive-definite function if 〈x∗, ω∗ ∗ ω〉 ≥ 0 for all ω ∈ L1

∗ (G)

3 a Fourier–Stieltjes transform of a positive measure if

(∃µ̂ ∈ Cu
0 (Ĝ)∗+) x = λ̂u(µ̂) (note: λ̂u : Cu

0 (Ĝ)∗ → M(C0(G)))

4 a completely positive multiplier if there exists a completely positive
multiplier of L1(Ĝ) associated to x.

Theorem (Daws, 2012; Daws & Salmi, 2013)
(1)⇐⇒ (3)⇐⇒ (4) =⇒ (2) . If G is co-amenable, all are equivalent.
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Comparison of topologies

Let G be a l.c. group.

Theorem (Raı̆kov, 1947; Yoshizawa, 1949)
On the set of positive-definite functions of norm 1, the w∗-topology
σ(L∞(G),L1(G)) coincides with the topology of uniform convergence
on compact subsets.

Actually, much more can be said.
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Comparison of topologies

The A(G)-strict topology on B(G) is induced by the semi-norms
u 7→ ‖uf‖A(G), f ∈ A(G).

Theorem A (Granirer & Leinert, 1981)
On the unit sphere of B(G), the w∗-topology coincides with the
A(G)-strict topology.

Taking positive elements in B(G), we get Raı̆kov, Yoshizawa.
Generalizes results of Derighetti (1970) and McKennon (1971).

The L1(G)-strict topology on M(G) := C0(G)∗ is induced by the
semi-norms µ 7→ ‖µ ∗ f‖L1(G), f ∈ L1(G).

Theorem B (Granirer & Leinert, 1981)
On the unit sphere of M(G), the w∗-topology coincides with the
L1(G)-strict topology.
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Comparison of topologies

Hu, Neufang & Ruan asked (2012) whether Theorems A,B generalize
to LCQGs. We answer this affirmatively.

Let G be a LCQG. The L1(G)-strict topology on Cu
0 (G)∗ is induced by

the semi-norms µ 7→ ‖µ ∗ ω‖L1(G), ω ∈ L1(G).

Theorem (Runde–V, 2014)
Let G be a LCQG. On the unit sphere of Cu

0 (G)∗, the w∗-topology
coincides with the L1(G)-strict topology.

How does this make sense?

Ami Viselter (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 13 / 26



Comparison of topologies

Hu, Neufang & Ruan asked (2012) whether Theorems A,B generalize
to LCQGs. We answer this affirmatively.

Let G be a LCQG. The Lp(G)-strict topology on Cu
0 (G)∗ is induced by

the semi-norms µ 7→ ‖µ ∗ ω‖Lp(G), ω ∈ Lp(G) (1 ≤ p ≤ 2).

Theorem (Runde–V, 2014)
Let G be a LCQG. On the unit sphere of Cu

0 (G)∗, the w∗-topology
coincides with the Lp(G)-strict topology.

How does this make sense?
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Comparison of topologies

Relying on the theory of the non-commutative Lp spaces, we have:

Theorem (Caspers, 2013)
For 1 ≤ p ≤ 2, consider Lp(G) := Lp(L∞(G)). One can give a proper
definition to convolution of elements of L1(G) with elements of Lp(G).

Remark
Apparently it is not possible to do that for p > 2.
Even classically, convolutions are not “well behaved” outside L1(G).

Generalizing this slightly, we have:

Proposition (Runde–V, 2014)
For 1 ≤ p ≤ 2, consider Lp(G) := Lp(L∞(G)). One can give a proper
definition to convolution of elements of Cu

0 (G)∗ with elements of Lp(G).
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Godement’s Theorem

Theorem (Godement, 1948)
Let G be a l.c. group. Every positive-definite, square-integrable
function over G has a square root: it is of the form g ∗ g, g̃ = g ∈ L2(G).

Theorem (Runde–V, 2014)
Let G be a co-amenable LCQG and x ∈ L∞(G). If x is positive definite
and x ∈ Nϕ (that is, ϕ(x∗x) < ∞), then x = λ̂(ω̂ζ) for some ζ ∈ P[

ϕ̂
.
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Godement’s Theorem

Let A be a full left Hilbert algebra w/ completion H. Consider the cone

P[ :=
{
η ∈ H : 〈η, ζ#ζ〉 ≥ 0 (∀ζ ∈ A)

}
(appearing in works of Araki, Connes, Haagerup, Perdrizet, Takesaki).
Say that η ∈ P[ is integrable if

sup
{〈
η, ξ

〉
: ξ ∈ A and π(ξ) is a projection

}
< ∞.

Example
Let A be the (full) left Hilbert algebra associated with the
Plancherel weight on VN(G) (A0 := Cc(G) with the inner product
of L2(G), product = convolution, ζ# = ζ∗, A := A′′0 ).

Then H = L2(G), and if f ∈ L∞(G) ∩ L2(G), then

f ∈ P[ ⇐⇒ f is positive definite.

Also, f ∈ P[ is integrable ⇐⇒ f ∈ A(G).
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Godement’s Theorem

Theorem (J. Phillips, 1973)

Let η ∈ P[. Then η is integrable⇐⇒ it has a square root ζ ∈ P[,
namely

〈
ξ, η

〉
=

〈
π(ξ)ζ, ζ

〉
for every ξ ∈ A.

Going back to Godement’s Theorem:
Take A from the last example.
Phillips proved that every positive-definite function in L2(G) is
integrable (= in A(G)).
Hence, Phillips’ Theorem implies Godement’s.
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Godement’s Theorem

Theorem (Runde–V, 2014)
Let G be a co-amenable LCQG and x ∈ L∞(G). If x is positive definite
and x ∈ Nϕ (that is, ϕ(x∗x) < ∞), then x = λ̂(ω̂ζ) for some ζ ∈ P[

ϕ̂
.

Proof (sketch)
We follow similar lines:

1 We let Aϕ̂ be the (full) left Hilbert algebra associated with the left
Haar weight ϕ̂ of Ĝ.

2 If x ∈ Nϕ (in L∞(G) and “square integrable”), then

x is positive definite ⇐⇒ Λ(x) ∈ P[ϕ̂.

3 In that case, Λ(x) is integrable.
4 Phillips’ Theorem applies =⇒ Λ(x) has a square root in P[

ϕ̂
.
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Amenability

Definition
A locally compact group G is amenable if it admits a left-invariant
mean: a state of L∞(G) that is invariant under left translations.

Examples
Compact groups, abelian (even solvable) groups, locally-finite groups.
Non-example: Fn, n ≥ 2.

Definitions
A LCQG G is amenable if it admits a left-invariant mean: a state m of
L∞(G) with m ((ω ⊗ id)∆(x)) = m(x)ω(1) for all x ∈ L∞(G), ω ∈ L1(G).

Theorem
G is amenable ⇐=

? =⇒ ? Ĝ is co-amenable.

Ami Viselter (University of Haifa, Israel) On positive definiteness over LCQGs WCOAS 2014 19 / 26



Amenability

Definition
A locally compact group G is amenable if it admits a left-invariant
mean: a state of L∞(G) that is invariant under left translations.

Examples
Compact groups, abelian (even solvable) groups, locally-finite groups.
Non-example: Fn, n ≥ 2.

Definitions
A LCQG G is amenable if it admits a left-invariant mean: a state m of
L∞(G) with m ((ω ⊗ id)∆(x)) = m(x)ω(1) for all x ∈ L∞(G), ω ∈ L1(G).

Theorem
G is amenable ⇐=
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Positive-definite measures

Let G be a locally compact group.

Definition
Say that µ ∈ M(G) is positive-definite if

∫
f ∗ f̃ dµ ≥ 0 for all f ∈ Cc(G).

Equivalently: λ(µ) ≥ 0 (recall: it belongs to M(C∗r (G))).

Theorem (Godement, 1948; extended by Valette, 1998)
TFAE:

1 G is amenable;
2

∫
f dµ ≥ 0 for each pos-def µ ∈ M(G) and pos-def function f ;

3
∫

dµ ≥ 0 for each pos-def µ ∈ M(G);
4 every pos-def function is the compact-open limit of functions of the

form g ∗ g̃, g ∈ Cc(G).
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Positive-definite measures

Let G be a LCQG.

Definition (Runde–V, 2014)
Say that µ ∈ C0(G)∗ is positive-definite if λ(µ) ≥ 0
(recall: it belongs to M(C0(Ĝ))).

Theorem (Runde–V, 2014)
If G is co-amenable, then TFAE:

1 Ĝ is co-amenable;
2 µ(x∗) ≥ 0 for each pos-def µ ∈ C0(G)∗and pos-def function x;
3 µ(1) ≥ 0 for each pos-def µ ∈ C0(G)∗;
4 every pos-def function is the strict limit in M(C0(G)) of a bounded

net of pos-def functions in λ̂(L1(Ĝ)+) ∩Nϕ.
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The separation property

Definition (Lau & Losert, 1986; Kaniuth & Lau, 2000)
Let G be a locally compact group and H be a closed subgroup of G.
Say that G has the H-separation property if for every g ∈ G\H there
exists a positive-definite function ϕ on G with ϕ|H ≡ 1 but ϕ(g) , 1.

Theorem
G has the H-separation property in these cases:

H is normal (easy)
H is compact (Eymard, 1964)
H is open (Hewitt & Ross)
G is [SIN] (Kaniuth & Lau, based on Forrest, 1992).

Example
Let G = the “ax + b group” and H ≤ G. Then:
G has the H-separation property ⇐⇒ H is either compact or normal.
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The separation property

Definition (Daws, Kasprzak, Skalski & Sołtan, 2012)
Let G,H be LCQGs. Say thatH is a closed quantum subgroup of G if
there exists a surjective ∗-homomorphism Φ : Cu

0 (G)→ Cu
0 (H)

intertwining the co-multiplications.

Such a map has a dual, Φ̂ : Cu
0 (Ĥ)→ M(Cu

0 (Ĝ)) (Meyer, Roy &
Woronowicz, 2012).

Example
If H ≤ G, then Φ is the restriction map C0(G)→ C0(H), f 7→ f |H,
and the dual Φ̂ is the natural embedding C∗(H) ↪→ M(C∗(G)).
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The separation property

Example
If H ≤ G, then Φ is the restriction map C0(G)→ C0(H), f 7→ f |H,
and the dual Φ̂ is the natural embedding C∗(H) ↪→ M(C∗(G)).

Definition (Runde–V, 2014)
Say that G has theH-separation property if whenever µ is a state of
Cu

0 (G) such that (µ ⊗ id)(V VG) < Φ̂(M(Cu
0 (Ĥ))), there is a state ω̂ of

Cu
0 (Ĝ) so that Φ((id ⊗ ω̂)(V VG)) = 1 but µ((id ⊗ ω̂)(V VG)) , 1.

In English:

if µ is a state of Cu
0 (G) that is “not supported byH”, then there exists a

positive-definite function that “restricts to 1 onH” but is “not 1 w.r.t. µ”.
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The separation property

Definitions (Woronowicz)
A LCQGH is compact if 1 ∈ C0(H).

The dual Ĥ is then called discrete. It admits a (bounded) co-unit
ε̂ ∈ C0(Ĥ)∗ and a central minimal projection p̂ ∈ L∞(Ĥ) so that
âp̂ = ε̂(â)p̂ = p̂â for every â ∈ L∞(Ĥ).

Let G be a LCQG andH a compact quantum subgroup of G. Then
there is an embedding γ : L∞(Ĥ) ↪→ L∞(Ĝ) “interacting well with Φ̂”.

Theorem (Runde–V, 2014)
If

(∀ẑ ∈ M(C0(Ĝ))) ∆̂G(ẑ)(γ(p̂) ⊗ 1) = γ(p̂) ⊗ ẑ =⇒ ẑ ∈ Imγ,

then G has theH-separation property.
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The separation property

This condition holds, even for every ẑ ∈ L∞(Ĝ), in these cases:
The commutative case: H ≤ G
The co-commutative case:
G = Ĝ andH = Ĝ/A where A E G is open
Cocycle bicrossed products
I H is a compact normal quantum subgroup of G whose ambient

extension is cleft
I the construction involves two LCQGs, G1,G2
I it is a (von Neumann algebraic) generalization of the

Packer–Raeburn twisted crossed products.
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Thank you for your attention!
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